Managerial Economics in a Global Economy, 5th Edition by
 Dominick Salvatore

Chapter 5

Demand Forecasting

Qualitative Forecasts

- Survey Techniques
- Planned Plant and Equipment Spending
- Expected Sales and Inventory Changes
- Consumers' Expenditure Plans
- Opinion Polls
- Business Executives
- Sales Force
- Consumer Intentions

Time-Series Analysis

- Secular Trend
- Long-Run Increase or Decrease in Data
- Cyclical Fluctuations
- Long-Run Cycles of Expansion and Contraction
- Seasonal Variation
- Regularly Occurring Fluctuations
- Irregular or Random Influences

Trend Projection

- Linear Trend:
$S_{t}=S_{0}+b t$
$b=$ Growth per time period
- Constant Growth Rate
$S_{t}=S_{0}(1+g)^{t}$
$\mathrm{g}=$ Growth rate
- Estimation of Growth Rate $\ln S_{t}=\ln S_{0}+t \ln (1+g)$

Seasonal Variation

Ratio to Trend Method

$$
\text { Ratio }=\frac{\text { Actual }}{\text { Trend Forecast }}
$$

Seasonal = Average of Ratios for
Adjustment $=$ Each Seasonal Period

Seasonal Variation

Ratio to Trend Method: Example Calculation for Quarter 1

Trend Forecast for $1996.1=11.90+(0.394)(17)=18.60$
Seasonally Adjusted Forecast for $1996.1=(18.60)(0.8869)=16.50$

Year	Trend Forecast	Actual	Ratio
1992.1	12.29	11.00	0.8950
1993.1	13.87	12.00	0.8652
1994.1	15.45	14.00	0.9061
1995.1	17.02	15.00	0.8813
Seasonal Adjustment $=$			
0.8869			

Moving Average Forecasts

Forecast is the average of data from w periods prior to the forecast data point.

$$
F_{t}=\sum_{i=1}^{w} \frac{A_{t-i}}{w}
$$

Exponential Smoothing Forecasts

Forecast is the weighted average of of the forecast and the actual value from the prior period.

$$
\begin{gathered}
F_{t+1}=w A_{t}+(1-w) F_{t} \\
0 \leq w \leq 1
\end{gathered}
$$

Root Mean Square Error

Measures the Accuracy of a Forecasting Method

Barometric Methods

- National Bureau of Economic Research
- Department of Commerce
- Leading Indicators
- Lagging Indicators
- Coincident Indicators
- Composite Index
- Diffusion Index

Econometric Models

Single Equation Model of the Demand For Cereal (Good X)

$Q_{X}=a_{0}+a_{1} P_{X}+a_{2} Y+a_{3} N+a_{4} P_{S}+a_{5} P_{C}+a_{6} A+e$
$Q_{X}=$ Quantity of X
$P_{X}=$ Price of Good X
$\mathrm{Y}=$ Consumer Income $\quad \mathrm{A}=$ Advertising
$\mathrm{N}=$ Size of Population $\quad \mathrm{e}=$ Random Error

Econometric Models

Multiple Equation Model of GNP

$$
\begin{aligned}
C_{t} & =a_{1}+b_{1} G N P_{t}+u_{1 t} \\
I_{t} & =a_{2}+b_{2} \pi_{t-1}+u_{2 t} \\
G N P_{t} & \equiv C_{t}+I_{t}+G_{t}
\end{aligned}
$$

Reduced Form Equation

$$
G N P_{t}=\frac{a_{1}+a_{2}}{1-b_{1}}+\frac{b_{2} \pi_{t-1}}{1}-b_{1}+\frac{G_{t}}{1-b_{1}}
$$

Input-Output Forecasting

Three-Sector Input-Output Flow Table

	Producing Industry				
Supplying Industry	A	B	C	Final Demand	Total
A	20	60	30	90	200
B	80	90	20	110	300
C	40	30	10	20	100
Value Added	60	120	40		220
Total	200	300	100	220	

Input-Output Forecasting

Direct Requirements Matrix

Direct = Input Requirements Requirements Column Total

	Producing Industry		
Supplying Industry	A	B	C
A	0.1	0.2	0.3
B	0.4	0.3	0.2
C	0.2	0.1	0.1

Input-Output Forecasting

Total Requirements Matrix

	Producing Industry		
Supplying Industry	A	B	C
A	1.47	0.51	0.60
B	0.96	1.81	0.72
C	0.43	0.31	1.33

Input-Output Forecasting

Total
Requirements
Matrix

Final Total
Demand Demand Vector
Vector

1.47	0.51	0.60		
0.96	1.81	0.72		
0.43	0.31	1.33	\bullet	90
:---:				
110				
20	$=$	200		
:---:				
300				
100				

Input-Output Forecasting

Revised Input-Output Flow Table

	Producing Industry			$\begin{gathered} \text { Final } \\ \text { Demand } \end{gathered}$	Total
Supplying Industry	A	B	C		
A	22	62	31	100	215
B	88	93	21	110	310
C	43	31	10	20	104

