

MENGAPA MEMPELAJARI PERSAMAAN DIFFERENSIAL

$$y = f(x)$$

- Relasi yang menghubungkan variabel independent x dengan variabel dependent y
- Variabel x dan y menggambarkan besaran fisis, misalnya intensitas suara terhadap jarak, suhu terhadap waktu
- Dalam banyak kasus/situasi, kita tidak mengetahui y = f(x); kita hanya tahu laju perubahan y terhadap x

$$\frac{dT}{dt} = f(t)$$

Contoh-contoh persamaan differensial

ORDINARY VS PARTIAL

Ordinary

$$y = f(x)$$

$$\frac{dy}{dx} = 4y$$

Partial

$$y = f(x, z, \cdots)$$

$$\frac{\partial y}{\partial x} = \cdots$$

$$\frac{\partial y}{\partial z} = \cdots$$

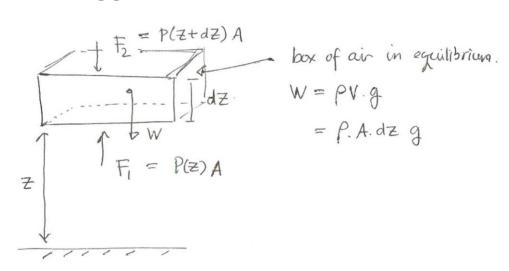
Persamaan differensial → pemodelan matematika dalam persoalan sains

Contoh 1

Laju peluruhan material radioaktif sebanding dengan jumlah radioaktif material tersebut

Laju pertumbuhan bakteri sebanding dengan jumlah bakteri

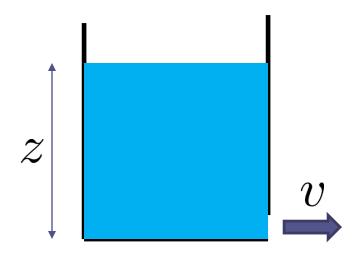
Contoh 2


Newton's law of cooling:

Laju penurunan suhu sebuah benda sebanding dengan perbedaan suhu benda dengan suhu ruangan

Contoh 3

Tekanan udara bergantung kepada ketinggian


$$\frac{dP}{dz} = -\rho g$$

Contoh 4

Laju penurunan tinggi air dalam sebuah tangki saat air keluar dari bawah tangki

Strategi?

Order

Degree

Linear Differensial Equation

General/umum

Particular/khusus