In this table, a is a constant, while u, v, w are functions. The derivatives are expressed as derivatives with respect to an arbitrary variable x.

http://www.ambrsoft.com/equations/Derivation.html

Derivation Basic Rules	
If f is a function of the independent variable x, the derivative of the function is defined by the equation:	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
y $f(x+h)$ $f(x)$	$\begin{aligned} f(x+h) - f(x) & is the height of the triangle. \\ h & is the base length of the triangle. \\ The slope is: & \tan \alpha = \frac{f(x+h) - f(x)}{(x+h) - x} \\ So when h & tends to zero the expression become: \\ f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ This is the slop of the tangent line to the function \\ f(x) & at point x. \end{aligned}$
chain rule : Suppose that: $y = y(u)$ and $u = u(x)$ then $\frac{dy}{dx}$ is defined by:	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \qquad du \neq 0 \text{ and } dx \neq 0$
multiplication rule : If $f(x) = g(x) \cdot u(x)$ then f' is:	f'(x) = g'u + gu'
quotient rule : If $f(x) = \frac{g(x)}{u(x)}$ then f' is:	$f'(x) = \frac{g' \cdot u - g \cdot u'}{u^2} \qquad u \neq 0$
Reciprocal rule : If $f(x) = \frac{1}{u(x)}$ then f' is:	$f'(x) = -\frac{u'}{u^2} \qquad \qquad u \neq 0$
Addition rule : If $f = f(x)$ and $g = g(x)$ and a and b are real numbers then $(af + bg)'$ is:	(af + bg)' = af' + bg'
Constant rule : If $f(x)$ is a constant then f' is:	f' = 0
If $f = f(x)$ then all the following notations for derivatives are valid:	First derivative: $\frac{df}{dx} \equiv f' \equiv \dot{f} \equiv f_x$ Second derivative: $\frac{d^2f}{dx^2} \equiv \frac{d}{dx} \left(\frac{df}{dx}\right) \equiv f'' \equiv \ddot{f} \equiv f_{xx}$
[DERIVATION TABLES] Algebric and Logarithmes functions	

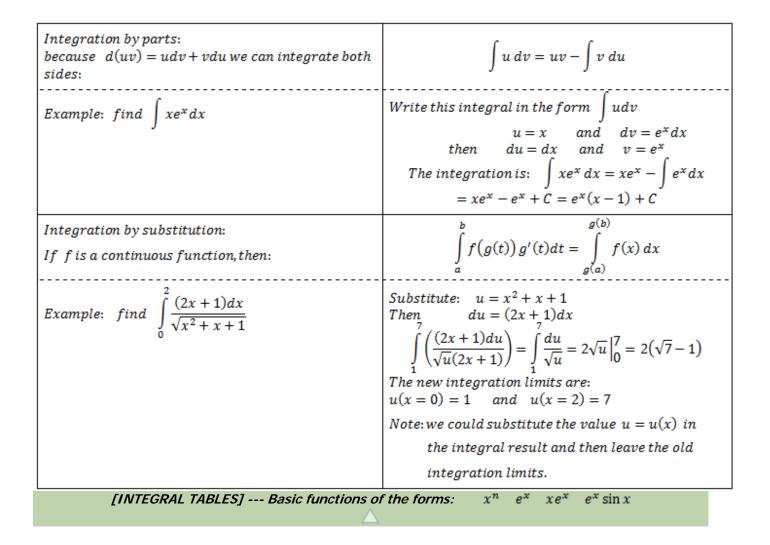
$\frac{d}{dx}(c) = 0$	$\frac{d}{dx}(cx) = c$	$\frac{d}{dx}(x^c) = cx^{c-1}$
$\frac{d}{dx}(c^x) = c^x \ln(c) \qquad c > 0$	$\frac{d}{dx}(x^x) = x^x(1 + \ln x)$	$\frac{d}{dx}(e^x) = e^x$
$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{-1}{x^2}$	$\frac{d}{dx}\left(\frac{1}{x^2}\right) = \frac{-2}{x^3}$	$\frac{d}{dx}\left(\frac{1}{x^n}\right) = \frac{-n}{x^{n+1}}$
$\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} x > 0$	$\frac{d}{dx}(\sqrt[8]{x}) = \frac{1}{3 \cdot \sqrt[8]{x^2}}$	$\frac{d}{dx} \left(\sqrt[n]{x}\right) = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$
$\frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = \frac{-1}{2\sqrt{x^3}}$	$\frac{d}{dx}\left(\frac{1}{\sqrt[9]{x}}\right) = \frac{-1}{3 \cdot \sqrt[9]{x^4}}$	$\frac{d}{dx}\left(\frac{1}{\sqrt[n]{x}}\right) = \frac{-1}{n \cdot \sqrt[n]{x^{n+1}}}$
$\frac{d}{dx}(\ln x) = \frac{1}{x} \qquad x > 0$	$\frac{d}{dx}(x\cdot\ln x) = \ln x + 1$	$\frac{d}{dx}(\log_c x) = \frac{1}{x\ln c} \qquad c > 0 c \neq 1$
$\frac{d}{dx}\left(\frac{1}{\ln x}\right) = \frac{-1}{x(\ln x)^2}$	$\frac{d}{dx}\left(\frac{1}{x\cdot\ln x}\right) = \frac{-(\ln x + 1)}{(x\cdot\ln x)^2}$	$\frac{d}{dx}\left(\frac{1}{\log_{c} x}\right) = \frac{-1}{x \cdot \ln c \cdot (\log_{c} x)^{2}}$
$\frac{d}{dx}\left(\frac{1}{x+1}\right) = \frac{-1}{(x+1)^2}$	$\frac{d}{dx}\left(\frac{1}{(x+1)^2}\right) = \frac{-2}{(x+1)^3}$	$\frac{d}{dx}\left(\frac{1}{(x+1)^n}\right) = \frac{-n}{(x+1)^{n+1}}$
$\frac{d}{dx}\left(\frac{1}{\sqrt{x+1}}\right) = \frac{-1}{2\cdot\sqrt{(x+1)^3}}$	$\frac{d}{dx}\left(\frac{1}{\sqrt[8]{x+1}}\right) = \frac{-1}{3 \cdot \sqrt[8]{(x+1)^4}}$	$\frac{d}{dx} \left(\frac{1}{\sqrt[n]{x+1}} \right) = \frac{-1}{n \cdot \sqrt[n]{(x+1)^{n+1}}}$
	A	

[DERIVATION TABLES] --- Trigonometric Functions

$\frac{d}{dx}\sin x = \cos x$	$\frac{d}{dx}\sinh x = \cosh x$
$\frac{d}{dx}\cos x = -\sin x$	$\frac{d}{dx}\cosh x = \sinh x$
$\frac{d}{dx}\tan x = \sec^2 x = \frac{1}{\cos^2 x}$	$\frac{d}{dx} \tanh x = 1 - \tanh^2 x = \operatorname{sech}^2 x$
$\frac{d}{dx}\cot x = -\csc^2 x = -\frac{1}{\sin^2 x}$	$\frac{d}{dx} \coth x = -\operatorname{csch}^2 x$
$\frac{d}{dx}\csc x = -\csc x \cot x$	$\frac{d}{dx}\operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x$
$\frac{d}{dx}\sec x = \sec x \tan x$	$\frac{d}{dx}\operatorname{sech} x = -\operatorname{sech} x \tanh x$
$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \qquad x < 1$	$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{1+x^2}}$
$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}} \qquad x < 1$	$\frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2 - 1}}$
$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} \qquad x < 1$
$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$	$\frac{d}{dx} \coth^{-1} x = \frac{1}{1 - x^2} \qquad x < 1$
$\frac{d}{dx}\csc^{-1}x = \frac{-1}{x\sqrt{x^2 - 1}} \qquad x > 1$	$\frac{d}{dx}\operatorname{csch}^{-1} x = \frac{-1}{x\sqrt{x^2 + 1}}$
$\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2 - 1}} \qquad x > 1$	$\frac{d}{dx}\operatorname{sech}^{-1} x = \frac{-1}{x\sqrt{x^2 - 1}}$
Partial Derivation	

Partial Derivatives definition: If f is a function of two variables or more f = f(x, y), then the partial derivatives can be found according to both variables as: $\frac{\partial f}{\partial x}$ (y is kept constant) and $\frac{\partial f}{\partial y}$ (x kept constant)	$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ $\frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$	
Chain rule : for computing partial derivatives: If $f = f(x,y)$ is continuous and both derivatives exists and $x = x(r,s)$ and $y = y(r,s)$ then:	$\frac{\partial f}{\partial r} = \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial x}{\partial r}\right) + \left(\frac{\partial f}{\partial y}\right) \left(\frac{\partial y}{\partial r}\right)$ $\frac{\partial f}{\partial s} = \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial x}{\partial s}\right) + \left(\frac{\partial f}{\partial y}\right) \left(\frac{\partial y}{\partial s}\right)$	
If $f = f(x, y)$ and their derivatives f_x, f_y are continuous in the range of the derivation then:	$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \qquad (f_{xy} = f_{yx})$	
If $f = f(x, y, z)$ and is differentiable in a range then the implicit differential is:	$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$	
If $f = f(x, y, z)$ and the function is continuous in the domain, then the ∇ operator can be defined. The meaning of this operator is the gradient vector at the point (a).	$\nabla f(a) = \left(\frac{\partial f}{\partial x}(a) + \frac{\partial f}{\partial y}(a) + \frac{\partial f}{\partial z}(a)\right)$	
Laplace operator in three dimentions: f should be twice differentiable in the domain.	$\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	
Laplace operator in polar form of two variables $f = f(r, \theta)$:	$\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$	
Laplace operator in spherical form $f = f(r, \theta, \varphi)$ $\theta - azimuth, \varphi - polar angle:$	$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left(\sin \varphi \frac{\partial f}{\partial \varphi} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 f}{\partial \theta^2}$	
Second and higher derivatives notation: If we write $z = f(x, y)$, then the following symbols have the same meanings:	$\frac{\partial^2 z}{\partial x^2}; \frac{\partial^2 f}{\partial x^2}; \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right); f_{xx}; z_{xx}$	
Integrals Basic Data		

y $y = f(x)$ $a_{\varepsilon_1} x_1 x_2 x_2 x_3 x_4 x_5 b x$	$\begin{array}{c} \textbf{Definite integral} \\ The definite integral of a function from point a \\ to point b is equivalent to the area under the \\ graph and the x axis. \\ The integral can be calculated by findding the \\ sum of each rectangle area: \\ First rectangle area is: f(\varepsilon_1) \cdot (x_1 - a) \\ Second rectangle area is: f(\varepsilon_2) \cdot (x_2 - x_1) \\ If \Delta x_k = x_k - x_{k-1} then the area is: \\ area = \lim_{\Delta x_k \to 0} \sum_{k=1}^n f(\varepsilon_k) \cdot \Delta x_k = \int_a^b f(x) dx \\ \end{array}$
If $f = f(x)$ and $g = g(x)$ then:	$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$
If $f = f(x)$ is defined in the range a to b and c is a point inside this range then:	$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$
If C is a constant then:	$\int_{a}^{b} Cf(x)dx = C\int_{a}^{b} f(x)dx$
Integration ranges can be changed according to the rule:	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
To the value received after integration always add a term of a constant C (this term is omitted in the following integral tables).	$\int a dx = ax + C$
Integration between two equals points are zero.	$\int_{a}^{a} f(x)dx = 0$



$$\begin{aligned} \int x^n dx &= \frac{x^{n+1}}{n+1} \quad n \neq -1 \\ \int \frac{1}{x} dx &= \ln|x| \\ \hline \int a^x dx &= \frac{a^x}{\ln a} \quad a > 0, \ a \neq 1 \\ \int \frac{1}{\sqrt{x}} dx &= 2\sqrt{x} \\ \hline \int e^x dx &= e^x \\ \int e^x dx &= e^x \\ \int x^2 e^2 dx &= e^x (x^2 - 2x + 2) \\ \int x^2 e^{ax} dx &= \frac{1}{a} e^{ax} \\ \hline \int x^n e^x dx &= x^n e^x - n \int x^{n-1} e^x dx \\ \int x^n e^{ax} dx &= \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx \\ \hline \int x e^x dx &= (x-1) e^x \\ \hline \int e^x \sin x dx &= \frac{1}{2} e^x (\sin x - \cos x) \\ \hline \int e^x \cos x dx &= \frac{1}{2} e^x (\sin x + \cos x) \\ \hline \int e^{ax} \sin(bx) dx &= \frac{e^{ax} (a \sin bx - b \cos bx)}{a^2 + b^2} \\ \hline \int x e^x \sin x dx &= \frac{1}{2} e^x (\cos x + x \sin x - x \cos x) \\ \hline \int e^x \tan x dx &= \frac{1}{2} e^x (\cos x + x \sin x - x \cos x) \\ \hline \int e^x \tanh x dx &= e^x - 2 \tan^{-1} (e^x) \\ \hline \int e^{ax} \sinh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \int e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx &= \frac{e^{ax} (a \sinh(bx) - b \cosh(bx))}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) dx \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} e^{ax} \cosh(bx) \\ \hline \end{bmatrix} e^{ax} \cosh(bx) \\ = \frac{e^{ax} (bx)}{a^2 - b^2} \\ \hline \end{bmatrix} \end{bmatrix} e^{ax} \cosh(bx) \\ \hline \end{bmatrix} e^{ax} \cosh(bx) \\ \hline \end{bmatrix} e^{ax} \cosh(bx)$$

[INTEGRAL TABLES] --- Logarithms functions of the forms: $\ln x$

$$\int \ln|x| \, dx = x \ln x - x \qquad \qquad \int (\ln|x|)^2 \, dx = x(\ln|x|)^2 - 2x \ln|x| + 2x$$

$$\int x^n \ln|x| \, dx = \frac{x^{n+1}}{n+1} \ln|x| - \frac{x^{n+1}}{(n+1)^2} \qquad n \neq -1 \qquad \int \frac{\ln^2 x}{x} \, dx = \frac{\ln^3 x}{3}$$

$$\int x^n \ln(ax) \, dx = \frac{1}{n+1} x^{n+1} \ln(ax) - \frac{1}{(n+1)^2} x^{n+1} \qquad n \neq -1$$

$$\int \ln(ax) \, dx = x \ln(ax) - x \qquad \qquad \int \frac{\ln(ax)}{x} \, dx = \frac{1}{2} [\ln(ax)]^2$$

$$\int \ln(ax + b) \, dx = \frac{ax + b}{a} \ln(ax + b) - x \qquad \qquad \int x \ln(ax + b) \, dx = \frac{b}{2a} x - \frac{1}{4} x^2 + \frac{1}{2} \left(x^2 - \frac{b^2}{a^2} \right) \ln(ax + b)$$

$$\int \log_a x \, dx = \int \frac{\ln x}{\ln a} \, dx = \frac{x \ln x - x}{\ln a} \qquad \qquad \int \frac{1}{x \ln x} \, dx = \ln(\ln x)$$

[INTEGRAL TABLES] --- Trigonometric functions of the forms: $\sin x$

$\int \sin x dx = -\cos x$	$\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin(2x)$	$\int \sin^{-1} x dx = x \sin^{-1} x + \sqrt{1 - x^2}$
$\int \cos x dx = \sin x$	$\int \cos^2 x dx = \frac{x}{2} + \frac{1}{4}\sin(2x)$	$\int \cos^{-1} x dx = x \cos^{-1} x - \sqrt{1 - x^2}$
$\int \tan x dx = -\ln \cos x $	$\int \tan^2 x dx = \tan x - x$	$\int \tan^{-1} x dx = x \tan^{-1} x - \ln\left(\sqrt{1 + x^2}\right)$
$\int \csc x dx = \ln \left \tan \frac{x}{2} \right $	$\int \csc^2 x dx = -\cot x$	$\int \csc^{-1} x dx = x \csc^{-1} x + \ln \left(x + \sqrt{x^2 - 1} \right)$
$\int \sec x dx = \ln \sec x + \tan x $	$\int \sec^2 x dx = \tan x$	$\int \sec^{-1} x dx = x \sec^{-1} x - \ln \left(x + \sqrt{x^2 - 1} \right)$
$\int \cot x dx = \ln \sin x $	$\int \cot^2 x dx = -\cot x - x$	$\int \cot^{-1} x dx = x \cot^{-1} x + \ln\left(\sqrt{1+x^2}\right)$
$\int \sinh x dx = \cosh x$	$\int \sinh^2 x dx = \frac{\sinh(2x)}{4}$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$
$\int \cosh x dx = \sinh x$	$\int \cosh^2 x dx = \frac{x}{2} + \frac{\sinh(2x)}{4}$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$
$\int \tanh x dx = \ln \cosh x $	$\int \tanh^2 x dx = x - \tanh x$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax)$
$\int \operatorname{csch} x dx = -\operatorname{coth}^{-1}(\cosh x)$	$\int \operatorname{csch}^2 x dx = -\coth x$	$\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b)$
$\int \operatorname{sech} x dx = \tan^{-1}(\sinh x)$	$\int \operatorname{sech}^2 x dx = \tanh x$	$\int \sin^{-1}(ax) dx = x \sin^{-1}(ax) + \sqrt{a^2 - x^2}$
$\int \coth x dx = \ln \sinh x $	$\int \tanh(ax) dx = \frac{1}{a} \ln(\cosh ax)$	$\int \tan^{-1}(ax) dx = x \tan^{-1}(ax) + \frac{1}{2a} \ln(1 + a^2 x^2)$
[INTEGRAL TABLES] Trigonometric functions of the forms: $\sin x \cos x dx$		

$\int \sin x \cos x dx = \frac{1}{2} \sin^2 x$	$\int \sec x \csc x dx = \ln(\tan x)$
$\int \sec x \tan x dx = \sec x$	$\int \csc x \cot x dx = -\csc x$
$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x$	$\int \operatorname{csch} x \operatorname{coth} x dx = -\operatorname{csch} x$
$\int \sin mx \cdot \sin nx dx = \frac{\sin(m-n) x}{2(m-n)} - \frac{\sin(m+n) x}{2(m+n)},$	$m \neq \pm n$
$\int \cos mx \cdot \cos nx dx = \frac{\sin(m-n) x}{2(m-n)x} + \frac{\sin(m+n) x}{2(m+n)},$	$m \neq \pm n$
$\int \sin mx \cdot \cos nx dx = -\frac{\cos(m-n) x}{2(m-n)} - \frac{\cos(m+n) x}{2(m+n)}$	$m \neq \pm n$
$\int \sinh(ax)\cosh(ax)dx = \frac{-2ax + \sinh(2ax)}{4a}$	
$\int \sin(ax) \sinh(bx) dx = \frac{b \cosh(bx) \sin(ax) - a \cos(ax)}{a^2 + b^2}$	$) \sinh(bx)$
$\int \sin(ax) \cosh(bx) dx = \frac{-a \cos(ax) \cosh(bx) + b \sin(ax) \sinh(bx)}{a^2 + b^2}$	
$\int \sinh(ax) \cosh(bx) dx = \frac{b \cosh(bx) \sinh(ax) - a \cosh(ax) \sinh(bx)}{b^2 - a^2}$	
$\int \cos(ax) \cosh(bx) dx = \frac{a \sin(ax) \cosh(bx) + b \cos(ax) \sinh(bx)}{a^2 + b^2}$	
$\int \cos(ax)\sinh(bx)dx = \frac{b\cos(ax)\cosh(bx) + a\sin(ax)\sinh(bx)}{a^2 + b^2}$	
[INTEGRAL TABLES] Algebric and trigonometric functions of the forms: $\sin^n x x^n \sin x$	

	T
$\int \sin^{n} x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx$	$\int \cos^n x dx = \frac{\sin x \cos^{n-1} x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx$
$\int \frac{dx}{\sin^n x} = -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}, n \neq 1$	
$\int \sin^3 x dx = -\frac{3}{4} \cos x + \frac{1}{12} \cos(3x)$	$\int \cos^3 x dx = \sin x - \frac{\sin^3 x}{3}$
$\int \tan^3 x dx = \ln(\cos x) + \frac{1}{2} \sec^2 x$	$\int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln \csc x - \cot x $
$\int x \sin x dx = \sin x - x \cos x$	$\int x \cos x dx = \cos x + x \sin x$
$\int x\sin(ax) dx = \frac{1}{a^2}\sin(ax) - \frac{x}{a}\cos(ax)$	$\int x\cos(ax) dx = \frac{1}{a}x\sin(ax) + \frac{1}{a^2}\cos(ax)$
$\int x^2 \sin x dx = 2x \sin x + (2 - x^2) \cos x$	$\int x^2 \cos x dx = 2x \cos x + (x^2 - 2) \sin x$
$\int x^2 \sin(ax) dx = \frac{2}{a^2} x \sin(ax) + \frac{2 - a^2 x^2}{a^3} \cos(ax)$	$\int x^2 \cos(ax) dx = \frac{2}{a^2} x \cos(ax) + \frac{a^2 x^2 - 2}{a^3} \sin(ax)$
$\int x^n \sin x dx = -x^n \cos x + n \int x^{n-1} \cos x dx$	$\int x^n \cos x dx = x^n \sin x - n \int x^{n-1} \sin x dx$
$\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$	$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$
$\int x \sin^{-1} x dx = \frac{1}{4} \left[(2x^2 - 1) \sin^{-1} x + x \sqrt{1 - x^2} \right]$	$\int x \cos^{-1} x dx = \frac{1}{4} \Big[(2x^2 - 1) \cos^{-1} x - x \sqrt{1 - x^2} \Big]$
[INTEGRAL TABLES] Algebric functions of the forms: $1 \pm x^2$	
$\int \frac{1}{1+x^2} dx = \tan^{-1} x$	$\int \frac{1}{\sqrt{1+x^2}} dx = \sinh^{-1} x$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \sinh^{-1} x$$

$$\int \frac{1}{1-x^2} dx = \tanh^{-1} x$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \cosh^{-1} x$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \cosh^{-1} x$$

$$\int \frac{1}{\sqrt{x^2-1}} dx = \cosh^{-1} x$$

$$\int \frac{1}{\sqrt{x^2-1}} dx = \cosh^{-1} x$$

[INTEGRAL TABLES] --- Algebric functions of the forms: x + a, x - a, a + bx

	-
$\int (x+a)^n dx = (x+a)^n \left(\frac{a}{1+n} + \frac{x}{1+n}\right), n \neq -1$	$\int \frac{1}{(x+a)^2} dx = \frac{-1}{x+a}$
$\int x(x+a) dx = \frac{(x+a)^{1+n}(nx+x-a)}{(n+2)(n+1)}$	$\int \frac{1}{x(x+a)} dx = \frac{1}{a} \ln\left(\frac{x}{x+a}\right)$
$\int \frac{x}{\sqrt{x+a}} dx = \frac{2}{3} (x+2a)\sqrt{x+a}$	$\int \sqrt{\frac{x}{x+a}} dx = \sqrt{x}\sqrt{x+a} - a\ln(\sqrt{x} + \sqrt{x+a})$
$\int \sqrt{x-a} dx = \frac{2}{3} (x-a)^{\frac{3}{2}}$	$\int \frac{1}{\sqrt{x-a}} dx = 2\sqrt{x-a}$
$\int x\sqrt{x-a}dx = \frac{2}{3}a(x-a)^{\frac{3}{2}} + \frac{2}{5}(x-a)^{\frac{5}{2}}$	$\int \frac{x}{\sqrt{x-a}} dx = \frac{2}{3} (x-2a)\sqrt{x-a}$
$\int \frac{1}{\sqrt{a-x}} dx = 2\sqrt{a-x}$	$\int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x}\sqrt{a-x} - a \tan^{-1}\left(\frac{\sqrt{x}\sqrt{a-x}}{x-a}\right)$
$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{b(n+1)} \qquad n \neq -1$	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b $
$\int \frac{x dx}{ax+b} = \frac{x}{a} - \frac{b}{a^2} \ln(ax+b)$	$\int \frac{dx}{x(ax+b)} = \frac{1}{b} \ln \left \frac{x}{ax+b} \right $
$\int \frac{x dx}{(ax+b)^2} = \frac{b}{a^2} \left(\frac{1}{ax+b} + \frac{1}{b} \ln ax+b \right)$	$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} + \frac{1}{b^2} \ln \left \frac{x}{ax+b} \right $
$\int \frac{1}{x^2(ax+b)} dx = -\frac{1}{bx} + \frac{a}{b^2} \ln\left(\frac{ax+b}{x}\right)$	$\int \frac{dx}{x^2(ax+b)^2} = \frac{-a}{b^2(ax+b)} - \frac{1}{b^2x} + \frac{2a}{b^3} \ln\left(\frac{ax+b}{x}\right)$
$\int \sqrt{ax+b} dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right)\sqrt{ax+b}$	$\int \frac{dx}{\sqrt{ax+b}} = \frac{2\sqrt{ax+b}}{a}$
$\int x\sqrt{ax+b} dx = \frac{2(3ax-2b)\sqrt{(ax+b)^3}}{15a^2}$	$\int \frac{x dx}{\sqrt{ax+b}} = \frac{2(ax-2b)}{3a^2}\sqrt{ax+b}$
$\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$	$\int \frac{dx}{x\sqrt{ax+b}} = \frac{1}{\sqrt{b}} \ln \left \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}} \right $
[INTEGRAL TABLES] Algebric functions of the f	<i>forms:</i> $a^2 + x^2$ $a^2 - x^2$ $x^2 - a^2$

$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) \qquad a \neq 0$	$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln(a^2 + x^2)$
$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1}\left(\frac{x}{a}\right)$	$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2}x^2 - \frac{1}{2}a^2 \ln(a^2 + x^2)$
$\int \frac{1}{x(a^2 + x^2)} dx = \frac{1}{2a^2} \ln\left(\frac{x^2}{a^2 + x^2}\right)$	$\int \sqrt{a^2 + x^2} dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \ln \left x + \sqrt{a^2 + x^2} \right $
$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right $	$\int x\sqrt{a^2 + x^2} dx = \frac{1}{3}(a^2 + x^2)^{\frac{3}{2}}$
$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \ln\left(x + \sqrt{a^2 + x^2}\right) = \sinh^{-1}\left(\frac{x}{a}\right)$	$\int \frac{1}{ x \sqrt{a^2 + x^2}} dx = -\frac{1}{a} \ln\left(\frac{a + \sqrt{x^2 + a^2}}{x}\right), \qquad x \neq 0$
$\int \frac{x}{\sqrt{a^2 + x^2}} dx = \sqrt{a^2 + x^2}$	$\int \frac{x^2}{\sqrt{a^2 + x^2}} dx = \frac{1}{2}x\sqrt{a^2 + x^2} - \frac{1}{2}\ln\left(x + \sqrt{a^2 + x^2}\right)$
$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \qquad x < a$	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln\left(\frac{a + x}{a - x}\right) = \frac{1}{a} \tanh^{-1} \frac{x}{a} \qquad x^2 < a^2$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\frac{x}{a} \qquad a > x $	$\int \frac{dx}{x\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln\left(\frac{a + \sqrt{a^2 - x^2}}{x}\right) \qquad 0 < x < a$
$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right $	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2}$
	$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = -\frac{1}{2}x\sqrt{a - x^2} - \frac{1}{2}a^2 \tan^{-1}\left(\frac{x\sqrt{a^2 - x^2}}{x^2 - a^2}\right)$
$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left x + \sqrt{x^2 - a^2} \right $	$\int \frac{1}{x^2 - a^2} dx = -\frac{1}{a} \tanh^{-1} \left(\frac{x}{a}\right)$
$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cos^{-1}\left(\frac{a}{x}\right), 0 < a < x $	$\int x\sqrt{x^2 - a^2} dx = \frac{1}{3}(x^2 - a^2)^{\frac{3}{2}}$
$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2}$	$\int \frac{x^2}{\sqrt{x^2 - a^2}} dx = \frac{1}{2}x\sqrt{x^2 - a^2} + \frac{1}{2}\ln\left(x + \sqrt{x^2 - a^2}\right)$
$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right), \qquad x > a$	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left x + \sqrt{x^2 - a^2} \right \qquad x > a > 0$