
IFA-305 Sistem Cerdas (Intelligent System)
Lecture 9-12

Introduction to Deep Learning

Nur Uddin, PhD.

Program Studi Informatika

Universitas Pembangunan Jaya

Tangerang Selatan

AI Evolution (#1)

Scope

• You're about to learn all you need to get started building your own
deep neural networks.

• Using Keras and Tensorflow you'll learn how to:
• create a fully-connected neural network architecture

• apply neural nets to two classic ML problems: regression and classification

• train neural nets with stochastic gradient descent, and

• improve performance with dropout, batch normalization, and other
techniques

What is Deep Learning?

• Some of the most impressive advances in artificial intelligence in
recent years have been in the field of deep learning.

• Natural language translation, image recognition, and game playing
are all tasks where deep learning models have neared or even
exceeded human-level performance.

• Deep learning is an approach to machine learning characterized by
deep stacks of computations. This depth of computation is what has
enabled deep learning models to disentangle the kinds of complex
and hierarchical patterns found in the most challenging real-world
datasets.

Neural Networks and Deep Learning

• Through their power and scalability neural networks have become
the defining model of deep learning.

• Neural networks are composed of neurons, where each neuron
individually performs only a simple computation.

• The power of a neural network comes instead from the complexity of
the connections these neurons can form.

The Linear Unit

• So let's begin with the fundamental component of a neural network:
the individual neuron. As a diagram, a neuron (or unit) with one input
looks like:

• Though individual neurons will usually only function as part of a
larger network, it's often useful to start with a single neuron model
as a baseline. Single neuron models are linear models.

Example: The Linear Unit as a Model

• Let's think about how this might work on a dataset like 80 Cereals.
Training a model with 'sugars' (grams of sugars per serving) as input
and 'calories' (calories per serving) as output, we might find the bias
is b=90 and the weight is w=2.5. We could estimate the calorie
content of a cereal with 5 grams of sugar per serving like this:

calories=2.5×5+90=102.5

https://www.kaggle.com/crawford/80-cereals

Multiple Inputs

• The 80 Cereals dataset has many more features than just 'sugars'.
What if we wanted to expand our model to include things like fiber or
protein content? That's easy enough. We can just add more input
connections to the neuron, one for each additional feature. To find
the output, we would multiply each input to its connection weight
and then add them all together.

Linear Unit in Keras (1)

• The easiest way to create a model in Keras is through
keras.Sequential, which creates a neural network as a stack of layers.
We can create models like those above using a dense layer (which
we'll learn more about in the next lesson).

• We could define a linear model accepting three input features
('sugars', 'fiber', and 'protein') and producing a single output
('calories') like so:

Linear Unit in Keras (2)

Part 2

Build Neural Networks

• In this lesson we're going to see how we can build neural networks
capable of learning the complex kinds of relationships deep neural
nets are famous for.

• The key idea here is modularity, building up a complex network from
simpler functional units. We've seen how a linear unit computes a
linear function -- now we'll see how to combine and modify these
single units to model more complex relationships.

Layers

• Neural networks typically organize their neurons into layers. When we
collect together linear units having a common set of inputs we get a dense
layer.

• You could think of each layer in a neural network as performing some kind of
relatively simple transformation. Through a deep stack of layers, a neural
network can transform its inputs in more and more complex ways. In a well-
trained neural network, each layer is a transformation getting us a little bit
closer to a solution.

Activation Functions (1)

• Without activation functions, neural networks (of linear units) can
only learn linear relationships. In order to fit curves, we'll need to use
activation functions.

Activation Functions (2)

• An activation function is simply some function we apply to each of a
layer's outputs (its activations). An example is the rectifier function
max(0,x) .

ReLU

• When we attach the rectifier to a linear unit, we get a rectified linear
unit or ReLU. (For this reason, it's common to call the rectifier
function the "ReLU function".)

• Applying a ReLU activation to a linear unit means the output
becomes max(0, w * x + b), which we might draw in a diagram like:

Stacking Dense Layers

• Now that we have some nonlinearity, let's see how we can stack layers to get complex data
transformations.

• The layers before the output layer are sometimes called hidden since we never see their
outputs directly.

• Now, notice that the final (output) layer is a linear unit (meaning, no activation function).
That makes this network appropriate to a regression task, where we are trying to predict
some arbitrary numeric value. Other tasks (like classification) might require an activation
function on the output.

Building Sequential Models

• The Sequential model we've been using will connect together a list of
layers in order from first to last: the first layer gets the input, the last
layer produces the output. This creates the model in the figure
above:

