IFA-305 Sistem Cerdas (Intelligent System) Lecture 4

 Rosenblatt's Perceptron - Part 1:

 Rosenblatt's Perceptron - Part 1: Forward Computation

 Forward Computation}

Nur Uddin, PhD.

Program Studi Informatika
Universitas Pembangunan Jaya
Tangerang Selatan

Model of Neuron

Parts of the Neuron - Terminals

Elements of Neuron Model

- A set of synapses, each synapse is characterized by a weight to strength the input signals.
- An adder for summing the weighted input signals.
- An activation function for limiting the amplitude of the output of a neuron
- A bias for increasing or lowering the net input of the activation function.

Mathematical Model of Neuron

Exercise:

$$
\begin{aligned}
& w_{1}=2 \\
& w_{2}=3 \\
& w_{3}=-1
\end{aligned}
$$

$$
\begin{aligned}
& V=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b \\
& L=2 x_{1}+3 x_{2}-x_{3}+b \\
& \square V=\sum_{i=1}^{3} w_{i} x_{i}+b
\end{aligned}
$$

$$
\begin{aligned}
& \text { Matrix Representation } \\
& {\left[v=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b\right.} \\
& =2 x_{1}+3 x_{2}-x_{3}+b \\
& \square V=\sum_{i=1}^{3} w_{i} x_{i}+b \\
& \text { n } V=\overline{w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}}+b \\
& \begin{array}{l}
=\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+b \\
V=W x+b
\end{array} \\
& w_{1}=2 \\
& w_{2}=3 \\
& W=\left[\begin{array}{lll}
2 & 3 & -1
\end{array}\right] \\
& \begin{array}{l|l}
x_{1}=2 & b=1 \\
x_{2}=-1 &
\end{array} \\
& x_{3}=3 \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right] \\
& v=w x+b \\
& =\left[\begin{array}{lll}
2 & 3 & -1
\end{array}\right)\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]+ \\
& =4+(-3)+(-3)+ \\
& =-1
\end{aligned}
$$

Activation Function

1. Threshold function

$$
\begin{aligned}
& v=-1 \\
& y=\varphi(-1)=0
\end{aligned}
$$

Activation Function (Cont'd)

2. Sigmoid function

$$
\varphi(v)=\frac{1}{1+\exp (-a v)}
$$

$$
\begin{aligned}
& a=5 \\
& v=-1 \\
& \varphi(-1)=\frac{1}{1+\exp (-5)}
\end{aligned}
$$

Activation Function (Cont'd)

3. Signum function

$$
\varphi(v)=\left\{\begin{aligned}
1 & \text { if } v>0 \\
0 & \text { if } v=0 \\
-1 & \text { if } v<0
\end{aligned}\right.
$$

Activation Function (Cont'd)

4. Hyperbolic tangent function

$$
\varphi(v)=\tanh (v)
$$

$$
\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Rosenblatt's Perceptron

History

In the formative years of neural networks (1943-1958), several researchers stand out for their pioneering contributions:

- McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.
- Hebb (1949) for postulating the first rule for self-organized learning.
- Rosenblatt (1958) for proposing the perceptron as the first model for learning with a teacher (i.e., supervised learning).

History

Pioneering work on neural network:

- McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.
- Hebb (1949) for postulating the first rule for self-organized learning.
- Rosenblatt (1958) for proposing the perceptron as the first model for learning with a teacher (i.e., supervised learning).

Perceptron

=model dari neuron

- The perceptron is the simplest form of a neural network.
- It is used to classify linearly separable patterns.
- The learning algorithm was developed by Rosenblatt $(1958,1962)$ for his perceptron brain model.

Linearly Separable Patterns

FIGURE 1.4 (a) A pair of linearly separable patterns. (b) A pair of non-linearly separable patterns.

Perceptron Model

- Rosenblatt's perceptron is built around a nonlinear neuron, namely, the McCulloch-Pitts model of a neuron.

Mathematics Model of Perceptron

Classification

Question 1:
How to make classification?
$y= \begin{cases}0, & \text { belongs to class } C_{1} \\ 1, & \text { belongs to class } C_{2}\end{cases}$

Question 2:
What is the activation function?

Example 1: Grading System

Mid Exam	Final Exam	Grade
60	50	Fail
70	60	Pass
40	80	Pass
$\checkmark 60$	65	Pass
$\checkmark 80$	50	Pass
$\checkmark 70$	50	Fail
$\checkmark 65$	55	Fail
$\checkmark 30$	80	Pass
$\checkmark 80$	40	Fail
90	30	Fail
50	70	Pass
40	60	

$$
\begin{aligned}
& \text { import numpy as np } \\
& \text { import matplotlib.pyplot as plt } \\
& =\underline{0.5} \times 60+0.5 \times 50+3 \\
& =55-60 \\
& \text { \# array }=-5 \\
& \text { xm=np.array([60, 70, 40, 60, 80, 70, 65, 30, 80, 90, 50]) \# mid exam } \\
& x f=n p . \operatorname{array}([50,60,80,65,50,50,55,80,40,30,70]) \text { \# final exam } \\
& \text { plt.xlabel('Mid Exam, xm') } \\
& \text { plt.ylabel('Final Exam, xf') } \\
& \text { plt.plot(xm,xf,'o') } \\
& \text { plt.grid() } \\
& \varphi= \begin{cases}0, & v<0 \\
1, & v \geqslant 0\end{cases} \\
& V=w_{1} x_{m}+w_{2} X_{f}
\end{aligned}
$$

Mid Exam	Final Exam	Grade
60	50	Fail
70	60	Pass
40	80	Pass
60	65	Pass
80	50	Pass
70	50	Fail
65	55	Fail
30	80	Pass
80	40	Fail
90	30	Fail
50	70	Pass

import numpy as np

import matplotlib.pyplot as plt

\# array

\Rightarrow xm=np. array $([60,70,40,60,80,70,65,30,80,90,50])$ \# mid exam $\nRightarrow x f=n p$.array $([50,60,80,65,50,50,55,80,40,30,70])$ \# final exam plt.xlabel('Mid Exam, xm')
plt.ylabel('Final Exam, xf')
plt.plot(xm,xf,'o')
plt.grid()

Exercise (Homework): Restaurant Survey

Price	Taste	Buy ?	Price 0
5	6	Yes	$\text { Tase } 0$
5	7	Yes	
6	3	No	$1:$
6	8	Yes	
7	3	No	
7	5	No	\downarrow
8	3	No	\cdots
8	5	No	
9	6	No	
9	9	Yes	
10	7	No	

