Calculus 1

Lecture 5 \& 6:

Derivatives

By:
Nur Uddin, Ph.D

Overview

- We discussed how to determine the slope of a curve at a point and how to measure the rate at which a function changes.
- We have studied limits, we can define these ideas precisely and see that both are interpretations of the derivative of a function at a point.
- We then extend this concept from a single point to the derivative function, and we develop rules for finding this derivative function easily, without having to calculate any limits directly.
- The derivative is one of the key ideas in calculus, and is used to study a wide range of problems in mathematics, science, economics, and medicine.

Tangents and the Derivative at a Point

DEFINITIONS The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

Example 1

(a) Find the slope of the curve $y=1 / x$ at any point $x=a \neq 0$. What is the slope at the point $x=-1$?
(b) Where does the slope equal $-1 / 4$?

Solution

(a) Here $f(x)=1 / x$. The slope at $(a, 1 / a)$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \frac{a-(a+h)}{a(a+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h a(a+h)}=\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=-\frac{1}{a^{2}}
\end{aligned}
$$

(b) The slope of $y=1 / x$ at the point where $x=a$ is $-1 / a^{2}$. It will be $-1 / 4$ provided that

$$
-\frac{1}{a^{2}}=-\frac{1}{4}
$$

This equation is equivalent to $a^{2}=4$, so $a=2$ or $a=-2$. The curve has slope $-1 / 4$ at the two points $(2,1 / 2)$ and $(-2,-1 / 2)$ (Figure 3.3).

Rate of change: derivative at a point

The expression

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}, \quad h \neq 0
$$

is called the difference quotient of \boldsymbol{f} at $\boldsymbol{x}_{\mathbf{0}}$ with increment \boldsymbol{h}. If the difference quotient has a limit as h approaches zero, that limit is given a special name and notation.

DEFINITION The derivative of a function \boldsymbol{f} at a point $\boldsymbol{x}_{\mathbf{0}}$, denoted $f^{\prime}\left(x_{0}\right)$, is

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided this limit exists.
The notation $f^{\prime}\left(x_{0}\right)$ is read " f prime of x_{0}."

Interpretations for the limit of the difference quotient

The following are all interpretations for the limit of the difference quotient,

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

1. The slope of the graph of $y=f(x)$ at $x=x_{0}$
2. The slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$
3. The rate of change of $f(x)$ with respect to x at $x=x_{0}$
4. The derivative $f^{\prime}\left(x_{0}\right)$ at a point

The derivative of a function

DEFINITION The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists.
Remember the different to:
DEFINITION The derivative of a function \boldsymbol{f} at a point $\boldsymbol{x}_{\mathbf{0}}$, denoted $f^{\prime}\left(x_{0}\right)$, is

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided this limit exists.

Example

Differentiate $f(x)=\frac{x}{x-1}$.

Solution We use the definition of derivative, which requires us to calculate $f(x+h)$ and then subtract $f(x)$ to obtain the numerator in the difference quotient. We have

$$
\begin{aligned}
& f(x)=\frac{x}{x-1} \quad \text { and } \quad f(x+h)=\frac{(x+h)}{(x+h)-1}, \text { so } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \\
&=\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h-1}-\frac{x}{x-1}}{h} \\
&=\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{(x+h)(x-1)-x(x+h-1)}{(x+h-1)(x-1)} \quad \text { Definition } \\
&=\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{a}{b}-\frac{c}{d}=\frac{a d-c b}{b d} \\
&=\lim _{h \rightarrow 0} \frac{-h-1)(x-1)}{(x+h-1)(x-1)}=\frac{-1}{(x-1)^{2}} . \quad \text { Simplify. } \quad \text { Cancel } h \neq 0 .
\end{aligned}
$$

Alternative formula for the derivative

$f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}$

Derivative of f at x is

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
\end{aligned}
$$

Example

Find the derivative of $f(x)=\sqrt{x}$ for $x>0$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{(\sqrt{z}-\sqrt{x})(\sqrt{z}+\sqrt{x})} \\
& =\lim _{z \rightarrow x} \frac{1}{\sqrt{z}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

When does a function not have a derivative at a point?

2. a cusp, where the slope of $P Q$ approaches ∞ from one side and $-\infty$ from the other.

When does a function not have a derivative at a point? (cont'd)

Calculus 1 - INF101-UPJ/INF/UDN

Differentiable functions are continuous

THEOREM 1—Differentiability Implies Continuity If f has a derivative at $x=c$, then f is continuous at $x=c$.

Differentiation Rules (1)

Derivative of a Constant Function

If f has the constant value $f(x)=c$, then

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0 .
$$

Proof We apply the definition of the derivative to $f(x)=c$, the function whose outputs have the constant value c (Figure 3.9). At every value of x, we find that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

Differentiation Rules (2)

Derivative of a Positive Integer Power

If n is a positive integer, then

$$
\frac{d}{d x} x^{n}=n x^{n-1} .
$$

Proof of the Positive Integer Power Rule The formula

$$
z^{n}-x^{n}=(z-x)\left(z^{n-1}+z^{n-2} x+\cdots+z x^{n-2}+x^{n-1}\right)
$$

can be verified by multiplying out the right-hand side. Then from the alternative formula for the definition of the derivative,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}=\lim _{z \rightarrow x} \frac{z^{n}-x^{n}}{z-x} \\
& =\lim _{z \rightarrow x}\left(z^{n-1}+z^{n-2} x+\cdots+z x^{n-2}+x^{n-1}\right) \quad n \text { terms } \\
& =n x^{n-1} .
\end{aligned}
$$

Differentiation Rules (2a)

Power Rule (General Version)

If n is any real number, then

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

for all x where the powers x^{n} and x^{n-1} are defined.

EXAMPLE 1 Differentiate the following powers of x.
(a) x^{3}
(b) $x^{2 / 3}$
(c) $x^{\sqrt{2}}$
(d) $\frac{1}{x^{4}}$
(e) $x^{-4 / 3}$
(f) $\sqrt{x^{2+\pi}}$

Differentiation Rules (3)

Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x} .
$$

Proof

$$
\begin{aligned}
\frac{d}{d x} c u & =\lim _{h \rightarrow 0} \frac{c u(x+h)-c u(x)}{h} & & \begin{array}{l}
\text { Derivative definition } \\
\text { with } f(x)=c u(x)
\end{array} \\
& =c \lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} & & \text { Constant Multiple Limit Property } \\
& =c \frac{d u}{d x} & & u \text { is differentiable. }
\end{aligned}
$$

EXAMPLE 2
(a) The derivative formula

$$
\frac{d}{d x}\left(3 x^{2}\right)=3 \cdot 2 x=6 x
$$

Differentiation Rules (4)

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum $u+v$ is differentiable at every point where u and v are both differentiable. At such points,

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} .
$$

Proof We apply the definition of the derivative to $f(x)=u(x)+v(x)$:

$$
\begin{aligned}
\frac{d}{d x}[u(x)+v(x)] & =\lim _{h \rightarrow 0} \frac{[u(x+h)+v(x+h)]-[u(x)+v(x)]}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{u(x+h)-u(x)}{h}+\frac{v(x+h)-v(x)}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h}+\lim _{h \rightarrow 0} \frac{v(x+h)-v(x)}{h}=\frac{d u}{d x}+\frac{d v}{d x} .
\end{aligned}
$$

Example

EXAMPLE 3 Find the derivative of the polynomial $y=x^{3}+\frac{4}{3} x^{2}-5 x+1$.

Differentiation Rules (5)

Derivative of the Natural Exponential Function

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Differentiation Rules (6)

Derivative Product Rule

If u and v are differentiable at x, then so is their product $u v$, and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$$
(u v)^{\prime}=u v^{\prime}+v u^{\prime}
$$

Example

Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

Example

Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

Solution

(a) From the Product Rule with $u=x^{2}+1$ and $v=x^{3}+3$, we find

$$
\begin{aligned}
\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{3}+3\right)\right] & =\left(x^{2}+1\right)\left(3 x^{2}\right)+\left(x^{3}+3\right)(2 x) \quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =3 x^{4}+3 x^{2}+2 x^{4}+6 x \\
& =5 x^{4}+3 x^{2}+6 x .
\end{aligned}
$$

(b) This particular product can be differentiated as well (perhaps better) by multiplying out the original expression for y and differentiating the resulting polynomial:

$$
\begin{aligned}
y & =\left(x^{2}+1\right)\left(x^{3}+3\right)=x^{5}+x^{3}+3 x^{2}+3 \\
\frac{d y}{d x} & =5 x^{4}+3 x^{2}+6 x
\end{aligned}
$$

This is in agreement with our first calculation.

Differentiation Rules (7)

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u / v is differentiable at x, and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

EXAMPLE 8 Find the derivative of (a) $y=\frac{t^{2}-1}{t^{3}+1}$, (b) $y=e^{-x}$.

Solution

(a) We apply the Quotient Rule with $u=t^{2}-1$ and $v=t^{3}+1$:

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\left(t^{3}+1\right) \cdot 2 t-\left(t^{2}-1\right) \cdot 3 t^{2}}{\left(t^{3}+1\right)^{2}} \quad \frac{d}{d t}\left(\frac{u}{v}\right)=\frac{v(d u / d t)-u(d v / d t)}{v^{2}} \\
& =\frac{2 t^{4}+2 t-3 t^{4}+3 t^{2}}{\left(t^{3}+1\right)^{2}} \\
& =\frac{-t^{4}+3 t^{2}+2 t}{\left(t^{3}+1\right)^{2}}
\end{aligned}
$$

(b) $\frac{d}{d x}\left(e^{-x}\right)=\frac{d}{d x}\left(\frac{1}{e^{x}}\right)=\frac{e^{x} \cdot 0-1 \cdot e^{x}}{\left(e^{x}\right)^{2}}=\frac{-1}{e^{x}}=-e^{-x}$

Second- and higher- order derivatives

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d y^{\prime}}{d x}=y^{\prime \prime}=D^{2}(f)(x)=D_{x}^{2} f(x) . \\
& y^{(n)}=\frac{d}{d x} y^{(n-1)}=\frac{d^{n} y}{d x^{n}}=D^{n} y
\end{aligned}
$$

$y^{\prime} \quad$ " y prime"
y " " y double prime"
$\frac{d^{2} y}{d x^{2}} \quad$ " d squared $y d x$ squared"
y "' " y triple prime"

Symbols for derivatives

$y^{\prime} \quad$ " y prime"
$y^{\prime \prime} \quad$ " y double prime"
$\frac{d^{2} y}{d x^{2}} \quad$ " d squared $y d x$ squared"
$y " \quad$ " y triple prime"
$y^{(n)} \quad$ " y super $n "$
$\frac{d^{n} y}{d x^{n}} \quad$ " d to the n of y by $d x$ to the $n "$
$D^{n} \quad$ " D to the $n "$

Derivatives of Trigonometric Function and the Chain Rule

Derivative of the sine function

$$
\frac{d}{d x}(\sin x)=\cos x
$$

EXAMPLE 1 We find derivatives of the sine function involving differences, products, and quotients.
(a) $y=x^{2}-\sin x: \quad \frac{d y}{d x}=2 x-\frac{d}{d x}(\sin x)$
Difference Rule

$$
=2 x-\cos x
$$

(b) $y=e^{x} \sin x: \quad \frac{d y}{d x}=e^{x} \frac{d}{d x}(\sin x)+\frac{d}{d x}\left(e^{x}\right) \sin x$
Product Rule
$=e^{x} \cos x+e^{x} \sin x$
$=e^{x}(\cos x+\sin x)$
(c) $y=\frac{\sin x}{x}: \quad \frac{d y}{d x}=\frac{x \cdot \frac{d}{d x}(\sin x)-\sin x \cdot 1}{x^{2}} \quad$ Quotient Rule

$$
=\frac{x \cos x-\sin x}{x^{2}}
$$

Derivative of the cos function

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

EXAMPLE 2 We find derivatives of the cosine function in combinations w functions.
(a) $y=5 e^{x}+\cos x$:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(5 e^{x}\right)+\frac{d}{d x}(\cos x) \\
& =5 e^{x}-\sin x
\end{aligned}
$$

(b) $y=\sin x \cos x$:

$$
\begin{aligned}
\frac{d y}{d x} & =\sin x \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}(\sin x) \quad \text { Product Rule } \\
& =\sin x(-\sin x)+\cos x(\cos x) \\
& =\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

Derivatives of the other basic trigonometric functions (Prove them!)

$$
\begin{array}{ll}
\tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}, & \sec x=\frac{1}{\cos x}, \quad \text { and } \quad \csc x=\frac{1}{\sin x} \\
\frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x
\end{array}
$$

The chain rule

Derivative of composite function

$$
y=(f \circ r) x
$$

THEOREM 2-The Chain Rule If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
\begin{array}{ll}
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) . \\
y=f(u) \text { and } u=g(x), \text { then }
\end{array} \quad \frac{d y}{d x}=?
$$

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x},
$$

where $d y / d u$ is evaluated at $u=g(x)$.

Examples

EXAMPLE 1 The function

$$
y=\left(3 x^{2}+1\right)^{2}
$$

Examples (cont'd)

EXAMPLE 6 The Power Chain Rule simplifies computing the derivative of a power of an expression.

$$
\text { (a) } \begin{array}{rlrl}
\frac{d}{d x}\left(5 x^{3}-x^{4}\right)^{7} & =7\left(5 x^{3}-x^{4}\right)^{6} \frac{d}{d x}\left(5 x^{3}-x^{4}\right) & & \begin{array}{l}
\text { Power Chain Rule with } \\
u=5 x^{3}-x^{4}, n=7
\end{array} \\
& =7\left(5 x^{3}-x^{4}\right)^{6}\left(5 \cdot 3 x^{2}-4 x^{3}\right) \\
& =7\left(5 x^{3}-x^{4}\right)^{6}\left(15 x^{2}-4 x^{3}\right) & & \\
\text { (b) } \begin{array}{rlr}
\frac{d}{d x}\left(\frac{1}{3 x-2}\right) & =\frac{d}{d x}(3 x-2)^{-1} &
\end{array} \\
& =-1(3 x-2)^{-2} \frac{d}{d x}(3 x-2) & & \begin{array}{l}
\text { Power Chain Rule with } \\
u=3 x-2, n=-1
\end{array} \\
& =-1(3 x-2)^{-2}(3) & & \\
& =-\frac{3}{(3 x-2)^{2}} &
\end{array}
$$

